Ask Matteo Borri: What Do The Methane Patterns On Mars Tell Us About The Possibility of Life There?

By Lisa Rein

The Curiosity Rover has found that the levels of the complex molecule “Methane” on Mars vary with its seasons, just like here on Earth. Credit: NASA/GSFC

You can see many of Matteo Borri’s creations at Robots Everywhere, LLC. He is a member of the Swartz-Manning VR Destination‘s Advisory Board. (The Swartz-Manning is an Aaron Swartz Day Production.)

NASA made an announcement recently about its latest finding about Mars.  Specifically, they found Methane, which clearly suggests that life is either there now, or was there, a long time ago.

Lisa Rein: Matteo, would you please summarize the implications of the Methane material NASA found on Mars?

Matteo Borri: Well, we already knew that there is Methane on Mars. What is interesting and new is that we have now figured out it comes out of the ground seasonally.

Methane on Earth mostly comes about by biological means, from bacteria, but surprisingly enough, the large share of it that comes out of cows’ hindquarters is enough to muddle the data, so we are not sure about it.

However, there is also a seasonal component to how much of it is released in the atmosphere. We now know that Methane is released during the summer and fall. On earth, Methane is also released seasonally. Typically during the end of summer.

Credit: NASA/JPL-Caltech

LR: So is part of the excitement that Mars is exhibiting more Earth-like characteristics?

MB: Yes. It’s one more point in common between the two planets.

LR: When they say they’ve found “organic compounds” one of the complex molecules required for life,” what does that mean?

MB: It means that there are complex molecules. “Organic compound” simply means a non-simple molecule containing Carbon. Historically, it was thought that only life-related processes could make those, but we’ve known that this is not the case for more than a century now. (However, the name stuck, which can cause confusion.)

LR: The NASA article said “It should take methane several hundred years to break apart in the presence of UV light, but that’s not what happened on Mars. The surge in methane seems to fade as quickly as it appears, indicating there’s not just a variable source, but a methane sink as well.” What the heck is a “methane sink?”

MB: A methane sink is a type of rock that absorbs methane when the condition for it. Carbonate rocks will fit the bill; so will Granite.

LR: What’s the connection between the Tryptophan that we just learned about in the last article, and these “complex molecules required for life” such as Methane?

MB: If we find Tryptophan, we know that we’ve got a life sign. Methane is actually a simple molecule, five atoms total, and can come about in an inorganic way.

Finding Methane in some parts of Mars, and not others, raises many interesting questions about the Methane’s origin. Might we have stumbled upon ancient Methane deposits from hardy bacteria that are no longer living? Or something else entirely?

There isn’t enough data right now. We have to go back and look, but this recent discovery gives us a place to start looking. It’s never a bad thing if you have even a hint of where to land your rover.

References:

Matteo Borri Explains: How The Next NASA Mars Rover Will Use Lasers to Search For Life On Mars

By Lisa Rein

The NASA Mars Rover takes a selfie. Photo: NASA/JPL-Caltech/MSSS

When we last left Matteo Borri and his company, Robots Everywhere LLC, he had built a chlorophyll spectroscope for NASA and the Mars Society, for the next Mars Rover. It uses a laser beam to zap the surface and then detect the reactive chlorophyll from other complex molecules. It was tested successfully over the last few months by the Mars Society, and will fly to Mars in 2020 on the next Mars Rover.

I checked back in with Matteo to see what new and exciting projects he is working on, and to help us better understand the science behind his laser-driven life-detecting inventions.

Matteo Borri is on the Advisory Board for the Swartz-Manning VR Destination. (An Aaron Swartz Day Production)

Lisa Rein: Hey Matteo how’s it going? What’s the latest on your NASA Mars Rover experimental research?

Matteo Borri: Well, if you remember, I had managed to figure out how to make a Chlorophyll detector that did not require cutting up a leaf and putting it in a little box. This is significant because we wanted to be able to mount the laser on a rover and have it scanning the surface as the rover moves along the surface of mars, and notifying the rover to stop when it detects something worth stopping for, like, the presence of Chlorophyll.

So, that worked so well, NASA decided to give me another hard problem to solve; could I develop a spectroscope that would cause a reaction to Tryptophan the way I got the chlorophyll to react to the other spectroscope?

LR: Why Tryptophan? I think of that being in turkey and making you tired on Thanksgiving. When my grandpa played professional baseball, they wouldn’t let them eat turkey on the day of a game.

MB: The sleepiness is an urban legend. We now know that Tryptophan doesn’t make you tired. But it is the same ingredient known to be in turkey.

But just as Chlorophyll exists in every piece of plant life on earth, tryptophan exists in not all but almost all pieces of animal life on earth.

So, if we had one laser spectroscope detecting Chlorophyll molecules, and the other detecting Tryptophan molecules, we will always be able to detect the existence of life (as we know it) there.

LR: We can only look for molecules that we already know to exist in “life” here on planet Earth?

MB: Correct. But we also have good reason to believe that any “life” found on other planets would still actually be composed of the same kinds of molecules found in “life” here.

LR: So the idea is to look for the most basic molecular substances that would have to be there along with anything else that was plant or animal living there.

Photo: NASA / JPL / Malin Space Science Systems

Read more “Matteo Borri Explains: How The Next NASA Mars Rover Will Use Lasers to Search For Life On Mars”