Matteo Borri Explains: How The Next NASA Mars Rover Will Use Lasers to Search For Life On Mars

By Lisa Rein

The NASA Mars Rover takes a selfie. Photo: NASA/JPL-Caltech/MSSS

When we last left Matteo Borri and his company, Robots Everywhere LLC, he had built a chlorophyll spectroscope for NASA and the Mars Society, for the next Mars Rover. It uses a laser beam to zap the surface and then detect the reactive chlorophyll from other complex molecules. It was tested successfully over the last few months by the Mars Society, and will fly to Mars in 2020 on the next Mars Rover.

I checked back in with Matteo to see what new and exciting projects he is working on, and to help us better understand the science behind his laser-driven life-detecting inventions.

Matteo Borri is on the Advisory Board for the Swartz-Manning VR Destination. (An Aaron Swartz Day Production)

Lisa Rein: Hey Matteo how’s it going? What’s the latest on your NASA Mars Rover experimental research?

Matteo Borri: Well, if you remember, I had managed to figure out how to make a Chlorophyll detector that did not require cutting up a leaf and putting it in a little box. This is significant because we wanted to be able to mount the laser on a rover and have it scanning the surface as the rover moves along the surface of mars, and notifying the rover to stop when it detects something worth stopping for, like, the presence of Chlorophyll.

So, that worked so well, NASA decided to give me another hard problem to solve; could I develop a spectroscope that would cause a reaction to Tryptophan the way I got the chlorophyll to react to the other spectroscope?

LR: Why Tryptophan? I think of that being in turkey and making you tired on Thanksgiving. When my grandpa played professional baseball, they wouldn’t let them eat turkey on the day of a game.

MB: The sleepiness is an urban legend. We now know that Tryptophan doesn’t make you tired. But it is the same ingredient known to be in turkey.

But just as Chlorophyll exists in every piece of plant life on earth, tryptophan exists in not all but almost all pieces of animal life on earth.

So, if we had one laser spectroscope detecting Chlorophyll molecules, and the other detecting Tryptophan molecules, we will always be able to detect the existence of life (as we know it) there.

LR: We can only look for molecules that we already know to exist in “life” here on planet Earth?

MB: Correct. But we also have good reason to believe that any “life” found on other planets would still actually be composed of the same kinds of molecules found in “life” here.

LR: So the idea is to look for the most basic molecular substances that would have to be there along with anything else that was plant or animal living there.

Photo: NASA / JPL / Malin Space Science Systems

Read more “Matteo Borri Explains: How The Next NASA Mars Rover Will Use Lasers to Search For Life On Mars”